
Scattering functions of knotted ring polymers

Miyuki K. Shimamura,* Kumiko Kamata,† and Akihisa Yao‡

Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Ohtsuka, Bunkyo-ku, Tokyo 112-8610, Japan

Tetsuo Deguchi§

Department of Physics, Ochanomizu University, 2-1-1 Ohtsuka, Bunkyo-ku, Tokyo 112-8610, Japan
�Received 5 April 2005; revised manuscript received 10 August 2005; published 14 October 2005�

We discuss the scattering function of a Gaussian random polygon with N nodes under a given topological
constraint through simulation. We evaluate the form factor PK�q� of a Gaussian polygon of N=200 having a
fixed knot K for some different knots such as the trivial, trefoil, and figure-eight knots. Here the Gaussian
polygons with different knots K have distinct values of the mean-square radius of gyration, RG,K

2 . We obtain the
Kratky plots of the form factors—i.e., the plots of �qRG,K�2PK�q� versus qRG,K—for the different topological
constraints and discuss nontrivial large-q behavior as well as small-q behavior for the scattering functions. We
also find that the distinct values of RG,K

2 play an important role in the large-q and small-q properties of the
Kratky plots.
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I. INTRODUCTION

Ring polymers have attracted much interest in polymer
physics, and their properties have been studied both theoreti-
cally and experimentally �1–6�. For the Gaussian random
polygon the analytic expression of the static structure factor
was obtained by Casassa �1�. The scattering function is com-
pared with that of star polymers with four or five arms
through the Kratky plot �1,5�. The scattering data of cyclic
polystyrene in deuteriated cyclohexane at the � temperature
were obtained by the SANS experiment �6�.

Recently statistical properties of ring polymers under to-
pological constraints have been investigated extensively
mainly through computer simulation �7–15�. It is first con-
jectured by des Cloizeaux that a topological constraint
should lead to effective repulsion among segments of ring
polymers so that the mean size of very long ring polymers
should increase under topological constraints �7�. The con-
jecture is supported by several numerical observations
�8,10–15�. In fact, the effective swelling due to topological
constraints occurs particularly for ring polymers with small
or zero excluded volume �14,15�.

In this paper we discuss the scattering function of ring
polymers under a topological constraint. It should be funda-
mental for studying ring polymers in scattering experiments.
We consider ring polymers in solution at the � temperature,
and they are modeled by random polygons. Here, random
polygons have no excluded volume—i.e., no thickness. We
shall evaluate the radial distribution function in simulation
and then take the Fourier transformation. We shall explicitly

discuss the scattering function of a random polygon having
some fixed knot type, making use of the Kratky plot of the
form factor.

Let us introduce the Kratky plot for a linear polymer con-
sisting of N segments. We first define the segment pair cor-
relation function for the polymer by �16�

g�r� =
1

N
�

m,n=1

N

��„r − �Rm − Rn�…� . �1�

Here Rm denotes the position vector of the mth segment of
the polymer for m=1,2 ,… ,N. The �single-chain� static
structure factor g�q� of the polymer is defined by the Fourier
transform of the pair correlation function as �16�

g�q� =� dreiq·rg�r� =
1

N
�

m,n=1

N

�exp�iq · �Rm − Rn��� . �2�

We also call it the scattering function. We define a form
factor P�q� as follows:

P�q� =
g�q�
g�0�

. �3�

Due to the rotational symmetry, the form factor is given by a
function of q= 	q	 as follows:

P�q� = f�qRG� . �4�

Here RG denotes the square root of the mean-square radius of
gyration of the polymer: RG=
�RG

2 �. For such models of
polymers with no excluded volume, the form factor has the
large-q asymptotic behavior: f�qRG�� �qRG�−2. Thus, it is
useful to make the plot of �qRG�2f�qRG� versus qRG. We call
such a plot the Kratky plot of the form factor of the linear
polymer �17�.

There are several interesting simulation researches asso-
ciated with topological effects of ring polymers �18–21�. For
instance, the lengths of localized knots in self-voiding poly-
gons have been extensively studied through a Monte Carlo
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simulation of a lattice �18�. Here it is suggested that knots
are localized in a knotted random polygon although the de-
gree of localization should be rather weak. However, there
has been no explicit numerical research on scattering func-
tions of random polygons under different topological con-
straints.

Let us now review some known results on the influence of
topological constraints on the average size of ring polymers
with excluded volume. The average size is determined
through competition among excluded-volume effects, finite-
size effects, and topological effects �22�. In fact, such com-
petition has been extensively studied in the simulation �15�
of ring polymers consisting of cylindrical segments of radius
�. Here we note that the cylindrical model of self-avoiding
polygons describes the statistical properties of DNA knots
�23�. Let us denote by �RG,K

2 ���� or simply by RG,K
2 ��� the

mean-square radius of gyration for such polygons that con-
sist of N cylindrical segments of radius � and have a given
topology K; we denote by the symbol �RG,all

2 ���� those of no
topological constraint. We first discuss the large-N behavior.
It has been shown numerically �15� that if the excluded-
volume parameter � is small, the mean-square radius of gy-
ration of ring polymers with a fixed knot K is larger than that
of no topological constraint for very large N; i.e., we have

RG,K
2 ���/RG,all

2 ��� � 1 for N � 1. �5�

When the above ratio is larger than 1, we say that topological
swelling occurs. If � is greater than some value �*, however,
the ratio becomes 1 when N is very large; i.e. there is no
topological swelling.

The topological swelling leads to the nontrivial amplitude
ratio when N is asymptotically large. The data of �RG,K

2 ����
versus N for large values of N are well approximated by the
asymptotic expansion in the following �15�:

RG,K
2 ��� = AKN2��1 + BKN−� + O�1/N�� . �6�

Here � is given by the exponent of self-avoiding walks,
�SAW. For any given knot type K, the amplitude ratio
AK /Aall�1 when �	�*. Thus, the amplitude ratio is non-
trivial for the case of thin ring polymers. In the case of �
��*, however, the amplitude ratio is trivial: AK /Aall=1,
which is consistent with the simulation results of self-
avoiding polygons on lattices �24,25�. The numerical result is
consistent with a phenomenological theory using two num-
bers expressing the excluded-volume and topological effects,
respectively �15,26,27�.

The typical finite-size behavior of cylindrical ring poly-
mers is given as follows. For the trivial knot K=0, the ratio
RG,0

2 ��� /RG,all
2 ��� is equal to 1 for very small N, and it in-

creases with respect to N and approaches some value larger
than 1 when � is small ��	�*�, while it is always equal to 1
when � is large ����*�. For any nontrivial knot K, the ratio
RG,K

2 ��� /RG,all
2 ��� is smaller than 1 for small N; however, it

increases with respect to N, and it becomes larger than 1
when � is small ��	�*�, while it increases up to 1 when � is
large ����*�.

Let us next discuss the case of ideal ring polymers. It is
shown by several simulation studies �10–13� that topological
swelling indeed occurs for random polygons. Here we recall
that ideal ring polymers and random polygons have no ex-
cluded volume. Furthermore, some schemes of asymptotic
expansion have been discussed for the mean-square radius of
gyration for random polygons under a topological constraint
�10–13�. As far as the mean-square radius of gyration is con-
cerned, it seems as if the topological effect might play a
similar role as excluded volume. However, it does not give
precisely the same effect. In fact, the distribution of the dis-
tance between opposite nodes of a random polygon with
fixed knot is roughly described by the Gaussian one rather
than that of self-avoiding walks �28�. Thus, also from this
viewpoint, it should be nontrivial to study the scattering
function of a random polygon under a topological constraint.

We discuss simulation results on the Gaussian random
polygon in this paper—i.e., a model of ideal ring polymers.
However, the numerical results of scattering functions should
also be useful for scattering experiments of thin ring poly-
mers with small excluded volume. In fact, as far as finite-size
properties are concerned, simulation results of ideal ring
polymers should be similar to those of thin ring polymers, as
was the case of cylindrical ring polymers with very small
radius � �15�. Here we do not consider any asymptotic prop-
erty such as the exponent � of the gyration radius.

The contents of the paper are given as follows. In Sec. II
we briefly discuss simulation methods. Then, we present the
data of the mean-square radius of gyration, �RG,K

2 �, for some
topological conditions K, which are obtained for 105 Gauss-
ian random polygons with N=200. In Sec. III we discuss the
plot of the radial distribution function—i.e., the probability
distribution 4
r2gK�r� of the Gaussian polygons for different
topological conditions K. We show that for each graph the
peak position is located at the value of the square root of
�RG,K

2 �. In Sec. IV we discuss the scattering functions of the
Gaussian polygons with the different topologies. In particu-
lar, we discuss the small-q and large-q behaviors of the scat-
tering functions through the Kratky plot. In summary, we
have evaluated the scattering functions of Gaussian random
polygons with N=200 under some different topological con-
ditions K. The Kratky plots have been obtained for the dif-
ferent K. They overlap up to u=2, they become separate for
u�2, and they approach constant values for u�1. The char-
acteristic properties in the small- or large-q regions are ex-
plained in terms of the different values of the gyration radius
RG,K.

II. SIMULATION METHODS AND THE DATA OF THE
MEAN-SQUARE GYRATION RADIUS

Making use of the conditional probability distribution
�29�, we have systematically constructed 105 samples of the
Gaussian random polygon with 200 nodes. We have calcu-
lated two knot invariants �K�−1� and v2�K� to each of the
105 configurations and effectively classified them into differ-
ent topological classes. Here the symbol �K�−1� denotes the
determinant of a knot K, which is given by the Alexander
polynomial ��t� evaluated at t=−1. The symbol v2�K� is the
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Vassiliev invariant of the second degree. We select such
polygons that have the same set of values of the two knot
invariants. Here we calculate v2�K� by the algorithm given in
�30�. The two knot invariants are practically useful for com-
puter simulation of random polygons with a large number of
polygonal nodes �31�.

We consider four different topological classes: the trivial
knot �0�, the trefoil knot �31�, the figure-eight knot �41�, and
the other knots �other�. We denote by “all” such polygons
that have no topological constraint.

Let us denote by �RG,K
2 � the mean-square radius of gyra-

tion of Gaussian random polygons with N nodes under a
given topological constraint K. The estimates of �RG,K

2 � for
N=200 are given in Table I for several knots. We find in
Table I that for N=200, the trivial knot �K=0� is the largest
and the trefoil knot �K=31� is almost equal to but slightly
less than the average �K=all�, while the figure-eight knot
�K=41� and other knots �K=other� are smaller than the av-
erage �K=all�. Thus, the estimates of �RG,K

2 � for the five
topological conditions are given in increasing order as fol-
lows:

RG,0
2 � RG,all

2 � RG,31

2 � RG,41

2 � RG,other. �7�

The fractions of such Gaussian polygons of N=200 that
have given knot types among the 105 generated polygons are
shown in Table I for the different topological conditions. The
fraction of the trivial knot is given by about 0.53, which
gives the largest one. The fraction of the trefoil knot is given
by about 0.21, and it is the most dominant nontrivial knot for
N=200.

For different numbers of N, the estimates of �RG,K
2 � have

been obtained in Ref. �10�. The fraction of Gaussian poly-
gons with a given knot has also been evaluated for some
species of knots �32�.

III. RADIAL DISTRIBUTION FUNCTIONS

A. Probability distribution 4�r2gK„r…�r /N

Let us recall definition �1� of the segment pair correlation
function of a polymer with N segments. The correlation
function g�r� depends only on the distance r= 	r	 due to the
rotational symmetry. We denote it by g�r� and call it the
radial distribution function. Here we note that 4
r2g�r��r /N
gives the probability of other segments appearing in a spheri-

cal shell from radius r to r+�r centered at a given segment.
For a Gaussian polygon under a topological condition K,

we denote by gK�r� and gK�r� the pair correlation function
and the radial distribution function, respectively. The graphs
of the probability distribution 4
r2gK�r��r /N are plotted
against r in Fig. 1. They are consistent with a preliminary
result �22�.

B. Gyration radius RG,K as the peak position of the
probability distribution 4�r2gK„r…�r /N

Recently, it has been observed �33� that for a random
polygon under no topological constraint, the peak position of
the probability distribution 4
r2g�r�� /N should be given by
the gyration radius of the random polygon. We shall show
that the new observation is valid also in the case of random
polygons under topological constraints.

Let us consider the Gaussian random polygon of N=200.
The estimates of the peak position of the probability distri-
bution 4
r2gK�r��r /N for the five topological conditions are
listed in Table II together with those of the gyration radius
RG,K. Here we recall that RG,K denotes the square root of the
mean-square radius of gyration—i.e., RG,K=
�RG,K

2 �. The
peak position rpeak and the gyration radius RG,K are almost
identical up to numerical errors in Table II. Thus, the equiva-
lence rpeak=RG,K has been numerically established within er-

TABLE I. Mean-square radius of gyration �RG,K
2 � and the frac-

tion of a Gaussian random polygon with a topological condition K.
Here N=200.

K �RG,K
2 � �errors� Fractions �errors�

0 18.033 �0.082� 0.533 �0.002�
31 16.208 �0.120� 0.214 �0.001�
41 15.043 �0.250� 0.045 �0.0006�

Other 13.459 �0.118� 0.188 �0.001�
All 16.674 �0.060� NA

FIG. 1. �Color online� The probability distribution
4
r2gK�r��r /N versus the distance r. Here N=200 and �r=0.1.
The plots of the five topological conditions, all, 0, 31 ,41, and other,
are represented by crosses, tilted crosses, double crosses, open
squares, and closed squares, respectively.

TABLE II. Peak position rpeak of the probability distribution
4
r2gK�r��r /N for a topological condition K. The estimates of rpeak

may have errors of order 0.1 at most.

K rpeak RG,K

0 4.25 4.246

31 4.05 4.026

41 3.85 3.879

Other 3.65 3.669

All 4.05 4.083
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rors. The equivalence should be characteristic to ring poly-
mers. In fact, for a Gaussian linear chain, the peak position
of the probability distribution 4
r2g�r��r /N is located at r
�0.74RG,lin, where RG,lin denotes the square root of the
mean-square radius of gyration for the linear chain �17�.

IV. SCATTERING FUNCTIONS

A. Form factor of a knotted random polygon

Let us recall definition �2� of the scattering function g�q�
for a polymer with N segments. The scattering function g�q�
depends only on q= 	q	, due to rotation symmetry. We denote
it by g�q�. For a Gaussian polygon under a topological con-
dition K, we denote the scattering function by the symbol
gK�q�.

We define the form factor PK�q� for a Gaussian polygon
under a topological condition K as follows:

PK�q� =
gK�q�
gK�0�

. �8�

We have PK�q�=gK�q� /N from definition �2�. Let us define
variable u by u=qRG,K. Here we recall that RG,K denotes the
square root of the mean-square radius of gyration for the
Gaussian random polygon under a given topological con-
straint K. Similarly as Eq. �4�, we define fK, a function of
variable u, by PK�q�= fK�qRG,K�.

The double-logarithmic plot of the form factor PK�q� ver-
sus u=qRG,K �i.e., fK�u� versus u� is shown in Fig. 2. Here
we recall that the form factor Pall�q� was evaluated analyti-
cally in terms of the Dawson integral �1�. In Fig. 2 we have
evaluated the form factor PK�q� for the five topological con-
ditions through simulation.

In the region from u=0 up to u=2 or 3, the form factors
PK�q� for the five topological conditions overlap each other
in the double-logarithmic scales. We note that the low-q part
of the form factor PK�q� is related to the large-r part of the
radial distribution function gK�r� through the Fourier trans-
formation. We shall show the correspondence precisely
through the Kratky plot in Fig. 3.

For u�5, the graphs of the different topological condi-
tions make approximately straight lines in the main panel. In
the inset of Fig. 2, the graphs, except for those of the other
knots �other�, make distinct lines parallel to each other. The
gradient is almost given by −2, which is consistent with the
Gaussian asymptotic behavior.

It follows from the four parallel and distinct lines in the
inset of Fig. 2 that for large q the form factor PK�q�
= fK�qRG,K� is approximated by

fK�u� � aK/u2, �9�

where the constants aK are distinct for the four topological
conditions. They are given in increasing order as follows:
a0�aall�a31

�a41
. Here, the estimates of aK for K

=0,31 ,41, other, and all are given by 1.05, 0.97, 0.91, 0.84,
and 1.01, respectively. It is suggested from the estimates of
aK that with the monomer number N fixed, the asymptotic
constant value aK should be smaller when the knot K is more
complex.

B. Kratky plot for a knotted random polygon

Let us discuss the Kratky plots of the form factors PK�q�
for some different topological conditions. The plots of
�qRG,K�2PK�q� versus the variable u=qRG,K are shown in Fig.
3. In other words, they are the plots of u2fK�u� versus u for
the different topological conditions K. Here we have numeri-
cally evaluated the Fourier transformations of the radial dis-

FIG. 2. �Color online� Double-logarithmic plot of the form fac-
tor PK�q� of an N-noded Gaussian polygon under a topological
condition K versus the variable u=qRG,K. The curves colored with
red �solid�, blue �dotted�, purple �continually dotted�, black �dotted
dimers�, and orange �dotted trimers� correspond to the cases of no
topological condition �all�, the trivial knot �0�, the trefoil knot �31�,
the figure-eight knot �41�, and the other knots �other�, respectively.
In the inset, the main panel is enlarged from qRG,K=6 to 10; the
graphs of 0, all, 31 ,41, and other are located from higher to lower
positions.

FIG. 3. �Color online� Plot of �qRG,K�2PK�q� versus u=qRG,K.
The Kratky plots of the trivial, trefoil, and figure-eight knots are
represented by the blue �dotted�, purple �continually dotted�, and
black �dotted with dimers� curves, respectively. The red �solid�
curve corresponds to the case of no topological constraint. In the
inset, the graphs near peak positions are enlarged. The red dots are
calculated by using the analytical expression of the scattering func-
tion of ring polymers given by Casassa �1�.
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tribution functions by an interpolation method �33�.
With the graphs shown in Fig. 3 we observe that the

mean-square radius of gyration, �RG,K
2 �, plays an important

role in the scattering function of the Gaussian polygon under
a topological condition K. In fact, plotting the form factor in
terms of variable u makes the graphs quite simple. In par-
ticular, in the small-u region such as u	2, the Kratky plots
for the different topological conditions overlap completely.
For u�2 the graphs become separate gradually.

The peak positions of the Kratky plots are given by al-
most the same value of u for all the five topological condi-
tions. The estimates of the peak positions are given in Table
III. They are the same value with respect to errors.

The peak heights of the Kratky plots depend on the topo-
logical conditions, as shown in the inset of Fig. 3. The esti-
mates of the peak height are also listed in Table III. The
Kratky plot for the trivial knot has the smallest peak height.
The peak height for the trefoil knot is a little larger than that
of the trivial knot. However, for the Kratky plots of the tre-
foil and figure-eight knots, the peak heights are given by
almost the same value.

The Kratky plots of Fig. 3 are not in contradiction with
those of the previous studies, and even generalize them. For
lattice random polygons with N=160, the Kratky plots were
numerically evaluated for all polygons and knotted polygons,
respectively �6�. We note in Table I that the majority of poly-
gons with nontrivial knots are given by those of the trefoil
knot for the Gaussian polygons with N=200. Thus, the
Kratky plots of all polygons and knotted polygons shown in
Ref. �6� approximately correspond to the plots of no topo-
logical constraint and the trefoil knot, respectively, which are
shown in Fig. 3.

C. Small-q behavior

Let us discuss the observation that the plots of u2fK�u�
versus u for the different topological conditions overlap
completely in the region of u	2. Here we recall that the
variable u is the wave number q normalized by RG,K. We
have

fK�u� = fall�u� for u 	 2. �10�

The observation suggests that the large-r behavior of the
radial distribution function gK�r� is given by rescaling the
function with the gyration radius RG,K. Here we note that the

large-r part of gK�r� is related to the small-q part of PK�q�
through the Fourier transformation.

In terms of the form factor, we have from Eq. �10� the
following:

PK�q� = fall�qRG,K� for q 	 2/RG,K. �11�

Thus, the small-q part of the form factor PK�q� is essentially
given by that of the Gaussian random polygon under no to-
pological constraint. The knot dependence is simply renor-
malized by the average size—i.e., RG,K. Here we note the
exact correspondence

u2fK�u�du = RG,K
3 q2PK�q�dq , �12�

where u=qRG,K.
The numerical result �11� should be consistent with the

observation that in the small-q region, the scattering function
of a polymer should depend only on the average size of the
polymer. In fact, the Kratky plot of a spherical molecule
overlap with that of a rodlike molecule in some small-u re-
gion �17�. Here we remark that it should be interesting to
discuss the numerical result �11� from the viewpoint of local
knots �18�. However, it is not clear how the present numeri-
cal result is related to local knots or not. We should discuss it
in future simulation studies.

D. Large-q behavior

For u�5, we observe that each of the Kratky plots of Fig.
3 approaches a constant value in the large-u limit. We thus
suggest an asymptotic behavior that for any topological con-
straint K the form factor PK�q� should become close to that
of the Gaussian polygon for u�1, such as PK�q�
�1/ �qRG,all�2. Here we recall that when u�1 the form factor
Plin�q� of a Gaussian linear chain is approximated by
Plin�q��2/ �qRG,lin�2.

In the double-logarithmic plot of Fig. 2 the large-q behav-
ior of the form factor is given by PK�q��aK / �qRG,K�2. We
thus have

�qRG,K�2PK�q� � aK for q � 1/RG,K. �13�

As we have discussed with Eq. �9�, the asymptotic constant
values aK for the four topological conditions 0, all, 31, and 41
are given in increasing order as a0�aall�a31

�a41
, which is

the same with the order among the values �RG,K
2 � given in

Table I.
Through the observation in the above we may suggest that

if knot K becomes more complex, the average spatial con-
figuration of random polygons with fixed knot K should be-
come closer to that of spherical molecules than that of rod
like molecules. Here we recall that in the large-q region, the
form factor of a spherical molecule has much smaller values
than that of a rod like molecule �17�. With the same number
of monomers given, the spherical molecule is much more
compact and smaller in size than the rod like molecule. The
spherical one has a much smaller value of the mean-square
radius of gyration. Thus, we suggest that the spatial configu-
ration of a random polygon with a more complex knot
should be more spherical than that of a less complex knot. In

TABLE III. Peak position upeak of the Kratky plot
�qRG,K�2PK�q� versus u=qRG,K for the Gaussian random polygon
under a given topological condition K. The q value is given by an
integral multiple of 0.01.

K upeak Peak height

0 2.08 1.266

31 2.09 1.272

41 2.09 1.275

Other 2.09 1.300

All 2.08 1.287
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fact, it is consistent with the observations that as knot K
becomes more complex the Kratky plot for knot K becomes
smaller in the large-q region and the value of RG,K is given
by a smaller value.

The estimates of aK are roughly consistent with the values
of the Kratky plots at u=6 for the four topological conditions
except for the case of other. Here we note that for u�10,
systematic errors of the Kratky plots could be larger than
statistical errors of the gyration radius RG,K. Thus, we have

limited the Kratky plot up to u=6 in Fig. 3. In the region of
u	6, the Kratky plot for K=all obtained in the simulation
overlaps with the theoretical points obtained by the exact
expression derived by Casassa �1�, as seen in Fig. 3.

Finally we recall that the distribution function between
opposite nodes of a random polygon with a fixed knot was
evaluated through a simulation recently, and it was found to
be close to the Gaussian one �28�. The interpretation �13�
should be consistent also with the observation.
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